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Abstract

Background: Recent evidence suggests transmission of Mycobacterium tuberculosis (Mtb) 

may be characterized by extreme individual heterogeneity in secondary cases (i.e., few cases 

account for the majority of transmission). Such heterogeneity implies outbreaks are rarer but 

more extensive and has profound implications in infectious disease control. However, discrete 

person-to-person transmission events in tuberculosis (TB) are often unobserved, precluding our 

ability to directly quantify individual heterogeneity in TB epidemiology.

Methods: We used a modified negative binomial branching process model to quantify the 

extent of individual heterogeneity using only observed transmission cluster size distribution 

data (i.e., the simple sum of all cases in a transmission chain) without knowledge of individual-

level transmission events. The negative binomial parameter k quantifies the extent of individual 

heterogeneity (generally, k < 1 indicates extensive heterogeneity, and as k → ∞ transmission 

becomes more homogenous). We validated the robustness of the inference procedure considering 

common limitations affecting cluster size data. Finally, we demonstrate the epidemiologic utility 

of this method by applying it to aggregate US molecular surveillance data from the US Centers for 

Disease Control and Prevention.

Results: The cluster-based method reliably inferred k using TB transmission cluster data despite 

a high degree of bias introduced into the model. We found that the TB transmission in the United 

States was characterized by a high propensity for extensive outbreaks (k = 0.09; 95% confidence 

interval = 0.09, 0.10).
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Conclusions: The proposed method can accurately quantify critical parameters that govern TB 

transmission using simple, more easily obtainable cluster data to improve our understanding of TB 

epidemiology.
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With more than 10 million new cases and 1.4 million deaths in 2019, tuberculosis (TB) 

is a major contributor to global morbidity and mortality.1 While the global TB incidence 

rate has declined over the past 20 years, the rate of decline has recently decelerated.1,2 

This is particularly true for low-incidence settings, where rates of decline have dramatically 

plateaued.1 For instance, despite the lowest recorded TB incidence in the world (2.2 cases 

per 100,000 population), on its current trajectory, the United States will not achieve its 

goal of TB elimination by the end of this century.3,4 An improved understanding of factors 

driving TB incidence across global surveillance systems is needed to guide population-

specific, risk-tailored interventions aimed at reaching TB targets.5,6

Incident cases of TB arise either through reactivation of a latent TB infection (LTBI) 

acquired in the distant past or recent transmission. Recent transmission is distinguished from 

reactivation of LTBI as it focuses on the proportion of infected individuals who progress 

to TB disease within a relatively short timeframe after infection (e.g., 0–3 years). While 

reactivation of LTBI is the dominant driver of TB incidence for most low-incidence settings, 

there remains compelling potential for extensive outbreaks of recent transmission that can 

fuel larger epidemics and lead to secondary outbreaks elsewhere.7–12 Hence, in addition 

to LTBI interventions, preventing transmission remains a key pillar in global TB control 

programs.

Growing evidence suggests recent transmission is predominantly a result of extreme 

individual heterogeneity, wherein a small minority of infectious individuals account 

for the majority of secondary cases (colloquially, “superspreading”).13–16 Such extreme 

variation greatly undermines interventions and is an important consideration in prevention 

strategies.17–21 Unfortunately, identifying exactly who infected whom among patients with 

TB is notoriously challenging due to the marked variability in timing of progression 

from infection to clinical disease. Hence, major gaps in our understanding of individual 

heterogeneity and its importance in shaping TB epidemiology remain.14–16

Individual heterogeneity in transmission is commonly quantified for many infectious 

diseases by evaluating over-dispersion (e.g., higher than expected variation) in the 

distribution of secondary cases.17,22 These methods are not widely applicable to TB since 

discrete secondary transmission events are unobserved. Fortunately, recent advances in 

genotyping techniques have afforded the ability for molecular surveillance systems to 

accurately approximate TB transmission clusters (e.g., all TB cases in a given chain of 

recent transmission).

Since individual chains of transmission give rise to the final transmission cluster size, there 

is an inherent relation between the distribution of secondary cases and the distribution of 
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cluster sizes in a given molecular surveillance system. Here, we evaluate a method that 

relates these two distributions and quantifies the degree of individual heterogeneity in TB 

transmission using only TB transmission cluster data. We further demonstrate the robustness 

of the inference procedure under potential limitations arising in TB surveillance and 

demonstrate the epidemiological significance of the procedure by applying it to aggregate 

TB molecular surveillance data from the United States.

METHODS

Statistical Methods

This analysis models underlying TB transmission using a single-type branching process. 

Branching processes are individual-based discrete stochastic processes that are widely used 

in biology and epidemiology to study the spread of infectious diseases.17,23–25 Analysis 

centers on the probability generating function (pgf) of the “offspring” distribution. The 

offspring distribution is the probability distribution for the number of secondary cases 

caused by each individual infectious case, denoted z (e.g., P(Z = z) for z = 0,1,2,…). 

The pgf specifies the probabilities associated with each Z value and is defined as 

GZ(s) = ∑z = 0
∞ P (Z = z)sz.26

Following previous studies, we assume the offspring distribution follows a negative binomial 

distribution with mean R0 (the basic reproduction number, herein referred to as the more 

generalizable R) and dispersion parameter k.17 The dispersion parameter k is commonly 

used in epidemiology to quantify the degree of individual heterogeneity in transmission. 

Smaller k values (k < 1) correspond to increased heterogeneity in secondary cases and 

imply outbreaks are rarer but more extensive; increasing values of k (e.g., k > 1) correspond 

to more homogeneous transmission. Importantly, the negative binomial converges to the 

epidemiologically relevant geometric and Poisson distributions when k = 1 or k → 
∞, respectively. The geometric distribution corresponds to the underlying assumption of 

heterogeneity made in typical differential equation models, while the Poisson distribution 

implies differences in secondary cases is solely attributed to stochasticity.

The primary focus of this analysis is to infer the negative binomial parameter k using 

only cluster-level data. We approach this by relating the offspring distribution of individual 

secondary cases, denoted Z, and the offspring distribution of cluster sizes, denoted Y. This 

relation is initially intuitive; the probability that a chain originating with a single index case 

results in a final cluster of size Y = 1 is identical to the probability of an individual index 

case results in no secondary transmission, thus P(Y = 1) = P(Z = 0). Expanding to Y = 2, 

the only valid transmission sequence is that an index case results in a single secondary case, 

thus, P(Y = 2) = P(Z = 1)P(Z = 0). When Y = 3, there are only two valid transmission 

sequences: either the index case results in two secondary cases or the index case results in a 

single secondary case, who in turn results in a single tertiary case, thus: P(Y = 3) = P(Z = 

2)P(Z = 0)2 + P(Z = 1)2 P(Z = 0).

We extend this relation to any cluster of size Y originating with an arbitrary number 

of n index cases (detailed methods in eAppendix 2; http://links.lww.com/EDE/B887 

and eAppendix 3; http://links.lww.com/EDE/B887). Briefly, recall GZ(s) generates the 
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probabilities that one individual will infect z secondary cases (z = 0,1,2,3…). It follows that 

GZ(s)y specifies all possible ways y cases may result in z secondary cases.27,28 However, 

two key constraints exist when considering applications of infectious disease transmission. 

Briefly, only a certain subset of possible permutations from GZ(s)y will result in biologically 

valid transmission sequences. For a cluster originating with n index cases resulting in a 

final size of exactly y, the proportion of valid transmission sequences is shown to be n/y.24 

Second, for every cluster of size y initiating with n index cases, there must always be exactly 

y – n transmission events in the cluster regardless of the sequence of transmission. We 

accounted for these constraints when using the classical procedure to extract the probability 

from a generating function,26 resulting in a final probability distribution for a transmission 

cluster of size y with n index cases defined as:

P (Y = y ∣ n) = n
y

Γ (ky + y − n)
Γ (ky)(y − n)!

R
k

y − n

1 + R
k

ky + y − n

Where Γ (x) = ∫0
∞tx − 1e−tdt. This independent derivation extends alternative derivations 

from Nishiura et al29 and Blumberg and Lloyd-Smith30 for the special cases when R > 1 and 

n = 1, respectively, and concurs with these derivations when assumptions are met.

Simulated Data

We simulated data to model underlying TB transmission across a range of specified R and 

k values; values of k < 1 are of primary interest and consistent with a high propensity 

for extreme heterogeneity in transmission. Our primary model assumes empirical values of 

R = 0.50 and k = 0.15.14,31,32 Transmission “chains” are defined as the exact sequence 

of underlying transmission events (e.g., transmission trees) originating from a single index 

case. Transmission chains are considered to originate by the sporadic activation of latent 

TB infection or by the introduction of an infectious individual into the population (e.g., 

migration). A transmission “cluster” is defined as the final chain size, including the index 

case and all cases from subsequent generations. An isolated case with no secondary 

transmission is considered a cluster of size one.

Unless otherwise stated, results are from 500 simulated surveillance systems, each 

containing 2,000 transmission chains originating with a single index case. Simulated 

individual-level data contained the full distribution of individual secondary cases (Z values). 

Final transmission cluster sizes (Y values) were the sum of cases in each transmission chain, 

including the index case. Thus, simulated cluster data were a simple vector of integers and 

obscured all information on individual transmission events.

Limitations in TB Surveillance

We modeled several potential real-world limitations affecting cluster size data in TB 

surveillance (Figure 1 and eAppendix 5; http://links.lww.com/EDE/B887). First, no 

surveillance system perfectly captures all cases in the population and only a proportion 

of all cases will be observed (Figure 1A and B). However, the mechanism in which cases 
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are observed is an important consideration affecting the distribution of cluster sizes. Passive 

surveillance, or the surveillance system’s ability to properly identify, diagnose, and report 

cases, is often the primary mechanism for case ascertainment. Importantly, once a case 

of TB is identified, many public health systems trigger active case finding measures to 

identify otherwise unreported cases (i.e., contact tracing). Case ascertainment by active case 

finding is likely differential by cluster size since larger clusters are more likely to have at 

least one case observed to trigger active case finding. Evaluating missing cases as a single 

proportion obscures this phenomenon. We account for this by via. a two-step process. We 

first simulate passive surveillance by observing each individual within a given transmission 

chain with probability p1 (e.g., p1 = 0.75 indicates 75% of all cases are observed by passive 

surveillance). After evaluation of p1, if at least one case in a given chain was observed 

with passive surveillance, we trigger active case finding for that chain. In these chains, 

all otherwise unobserved cases (i.e., missed by p1) have an additional opportunity to be 

observed with probability p2. Chains that are wholly unobserved are therefore not subject to 

active case finding. In addition, the position of the missing case in the chain may alter the 

distribution of cluster sizes (see Figure 1C). To account for this, chains may be “broken” into 

multiple pseudo-clusters depending on the position of missing cases after evaluation of p1 

and p2.

Censoring is inherent to analysis of surveillance data; transmission will be ongoing for 

some unknown proportion of chains at the time of data collection (Figure 1D). Censoring 

impacts the tail of the distribution as censoring cannot occur for an isolated case (which is 

either wholly observed or unobserved). To simulate censoring, each chain of size Y ≥ 2 was 

randomly designated as censored with probability pcens. The generation where censoring 

began was randomly selected using a uniform distribution. All cases in the generation 

selected for censoring and all subsequent generations were unobserved.

Finally, it is often difficult to unambiguously tease apart multiple transmission chains 

(“overlapping” chains; Figure 1E). This limitation often arises in TB surveillance when 

cases from two or more transmission chains are geno-typically indistinguishable and thus 

multiple transmission chains are combined into one genotypic cluster. This results in a 

single combined cluster of size y with n index cases (or “subclusters”). To simulate 

overlapping chains, each individual chain was first independently designated as overlapping 

with probability pcens (e.g., pcens = 0.10 indicates 10% of chains in the surveillance system 

will overlap). Among the pool of chains designated for overlap, we iteratively drew and 

merged j chains drawn from a Poisson distribution with λ = 2 (discarding iterations where 

j = 0 or j = 1). This process repeated until all chains designated to overlap were merged. 

Detailed methods and visuals representing the simulation process for all limitations are 

provided in eAppendix 5 (http://links.lww.com/EDE/B887).

United States TB Data Sources and Definitions

We examined the epidemiologic relevance of this method by applying the inference 

procedure to data from the US National Tuberculosis Surveillance System (NTSS), the 

National Tuberculosis Genotyping Service (NTGS), and surveillance for large outbreaks of 

TB in the United States, which are sponsored by the US Centers for Disease Control and 
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Prevention (CDC). These data are from all 50 US states and the District of Columbia. Since 

2009 CDC has performed genotyping for culture-confirmed cases using 24-locus myco-

bacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR) 

and spacer oligonucleotide typing (spoligotyping) in combination with collecting clinical, 

demographic, geospatial, and risk factor data for reported TB cases in the United States. 

Currently, the CDC uses algorithms that consider genotyping results and temporal and 

spatial proximity to identify clusters of cases that may represent recent transmission. 

Within this framework, the CDC further identifies possible large outbreaks of 10 or more 

genotype-matched cases within a 3-year period and monitors them for up to an additional 

2 years. Additionally, CDC performs whole genome sequencing (WGS) and compiles 

local epidemiologic data for all cases detected in possible large outbreaks. WGS provides 

increased molecular resolution at the level of single nucleotide polymorphisms (SNPs) and 

can be used alongside epidemiologic data to more precisely identify cases related by recent 

transmission.

We approximated transmission clusters using genotype-matched cases bound by space and 

time. We defined four cluster definitions using two timeframes (a 5-year period from 2012 

to 2016 and a nested 3-year subset from 2014 to 2016) and two geographic scales (state 

and county/county equivalent). We considered all clusters size Y ≥ 10 as censored; we 

evaluated this assumption by also considering when all clusters of size Y > 3 were censored 

and when no clusters were censored. Genotyping results were obtained for 95.8% of all 

culture-confirmed TB cases reported in the United States during the 5-year study timeframe.

Large genotype-matched clusters are prone to containing multiple overlapping transmission 

clusters.15 To account for this, possible large outbreaks were examined using higher-

resolution whole genome sequencing (WGS) data and local epidemiologic data to identify 

potential overlapping transmission clusters/subclusters (n value). An epidemiologic link was 

defined as known or probable contact between two patients during either patient’s infectious 

period. Following standard CDC practice for investigation of recent TB transmission in the 

United States, cases were considered to be in the same subcluster if isolates were within two 

SNPs or within five SNPs and the cases were epidemiologically linked.33,34 Cases for which 

WGS data were not available were included if they were epidemiologically linked to another 

case in the subcluster. Cases who did not meet these criteria were considered isolated cases 

within the larger cluster. We evaluated this assumption by assuming all large clusters had n = 

1 or all n = y, representing the minimum and maximum possible values of n, respectively.

The US CDC reviewed this analysis and determined it did not require approval by an 

institutional review board since data were collected and analyzed as part of routine public 

health surveillance and determined not to be human subjects research.

Maximum Likelihood Estimation of Transmission Parameters

Maximum likelihood estimation (MLE) was used to jointly estimate transmission 

parameters, R and k. Confidence intervals (CIs) were obtained using profile likelihood.35 

We used classical methods for MLE and confidence interval estimation for individual-level 

data as described elsewhere.22 For cluster-level data, we considered clusters as either wholly 

observed or censored (i.e., ongoing at the time of data collection). We accounted for 
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censoring by considering censored clusters to be of at least size y.25 The joint likelihood 

for a extinguished clusters and b censored clusters is therefore:

L(R, k ∣ a , b ) = ∏
y = 1

∞
∏

n = 1

y
P (Y = y ∣ n)ay, n ∏

y = 1

∞
∏

n = 1

y
P (Y ≥ y ∣ n)by, n

where P(Y = y|n) is the probability density function as specified above and 

P (Y ≥ y ∣ n) = 1 − ∑i = 1
y − 1P (Y = i ∣ n).

Approach to Evaluating Cluster-based Inference

We first compared the cluster-based inference procedure with classical methods that use 

the full distribution of secondary cases (i.e., exact transmission chains) under perfect 

surveillance. Since individual-level data provide the exact number of secondary cases for 

each case in the transmission chain, R and k could be directly quantified using standard 

MLE methods.22 Using the same dataset, we summed the total number of cases in each 

chain to generate the distribution of cluster sizes and used the proposed cluster-based MLE 

method to infer R and k.

We then evaluated the direction and magnitude of bias arising from the potential limitations 

in TB surveillance individually. For imperfect case ascertainment, we evaluated each 

combination of p1 and p2 between 0.1 and 1.0. We evaluated bias due to censoring when 

5%, 10%, and 20% of clusters were censored (pcens = 0.05,0.10,0.20) and similarly for 

overlapping clusters (pover = 0.05,0.10,0.20). For each individual analysis, we assumed no 

bias from other sources.

Finally, we evaluated inference under combined scenarios. Based on published reports and 

in consultation with global TB surveillance experts, three primary scenarios were developed 

representing high-resource, moderate-resource, and low-resource settings, with parameter 

values reflecting increasing bias as resources decline.36–39 We calculated partial ranked 

correlation coefficients (PRCCs) under these empirical parametric assumptions (R = 0.50, k 
= 0.15) to evaluate the strength of the relation between each limitation and its effect on k.

RESULTS

Initial Validation of the Inference Procedure

Table 1 compares the proposed cluster-based inference method with classical methods that 

utilize the full distribution of individual secondary cases22 across a range of R and k values 

under perfect surveillance. For all values, MLE estimates for both R and k from the cluster-

based inference procedure were unbiased and sufficient in parameter inference (see also 

eFigure 1; http://links.lww.com/EDE/B887). Under our empirical model assumptions (true R 
= 0.50, k = 0.15), the cluster-based inference procedure accurately estimated R = 0.50 (95% 

confidence interval [CI] = 0.45, 0.55) and k = 0.15 (CI = 0.14, 0.16).
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Bias Arising Due to Individual Limitations in Surveillance

Missing cases result in a systematic overestimation of k (i . e . , k > k), biasing estimates 

towards homogeneity (Figure 2). Our empirical model only slightly overestimated k despite 

a high degree of bias introduced into the model: k = 0.18 (CI = 0.14, 0.23) when 50% of 

cases were missing (p1 = 0 50) and ignoring active case finding (p2 = 0.00). Additional 

case ascertainment through active case finding (increasing p2) overinflated k (see Figure 

2 and eFigure 2A; http://links.lww.com/EDE/B887). Missing cases had minimal impact 

on R (eFigure 2B; http://links.lww.com/EDE/B887). Censored clusters systematically 

underestimated k(i . e . , k < k), biasing estimates towards heterogeneity. However, under 

empirical model assumptions this bias was negligible across all censoring thresholds: 

k = 0.15 (CI = 0.14, 0.16), 0.14 (CI = 0.13, 0.16), and 0.13 (CI = 0.12, 0.15) when 5%, 

10%, and 20% of clusters were censored, respectively. Accounting for this bias in the joint 

likelihood demonstrated a modest correction in the inference of k (Figure 3 and eFigure 3; 

http://links.lww.com/EDE/B887).

Inference of k was sensitive to overlapping clusters (Figure 4 and eFigure 4; http://

links.lww.com/EDE/B887). Without accounting for overlapping clusters, k was dramatically 

biased upward. Under empirical model assumptions, k = 0.23 (CI = 0.20, 0.28), 0.36 (CI = 

0.30, 0.45), and 1.46 (CI = 1.0, 2.4) at threshold values of 5%, 10%, and 20% of clusters 

in the surveillance system overlapping, respectively. Our approach to correcting this bias by 

conditioning the likelihood on the number of index cases sufficiently corrected for this bias 

(k = 0.15 [CI = 0.14, 0.16] for all three thresholds).

Performance of Inference Procedure Under Combined Scenarios

We modeled TB transmission under combined imperfect surveillance using high-resource, 

moderate-resource, and low-resource definitions (Table 2). Inference of both R and k 
was robust and could clearly and reliably distinguish between small differences in R and 

k values across all scenarios (Figure 5 and eFigure 5; http://links.lww.com/EDE/B887). 

Importantly, all three scenarios could unequivocally distinguish between k = 1, representing 

the geometric distribution, and all values below 0.50, including the empirical estimate of 

k = 0.15. There was a slight overestimation of k across all scenarios, which systematically 

increases as the true underlying value of k increases. R was consistently accurate and robust 

in all models (Figure 5 and eFigure 5; http://links.lww.com/EDE/B887, x axis).

Passive surveillance had a moderate effect and was most influential on model estimates 

under empirical assumptions (eFigure 6; http://links.lww.com/EDE/B887; PRCC −0.594, P 
< 0.001). Coverage probabilities were calculated to validate the simulation procedure for 

each scenario and demonstrated minimal bias (eTable 1; http://links.lww.com/EDE/B887 

and eFigure 7; http://links.lww.com/EDE/B887).

Analysis of US Surveillance Data

In the full 5-year timeframe (2012–2016), the United States reported 35,313 genotyped 

cases of TB. There were 29,238 genotypic clusters when defined at the county level (75% 

were isolated cases considered “clusters” of size 1), and 26,999 clusters (81% of size 
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1) when defined at the state level (eTable 2; http://links.lww.com/EDE/B887). The 3-year 

(2014–2016) subset included 20,780 cases of TB resulting in 18,128 clusters when defined 

at the county level and 16,212 clusters at the state level. Estimates using our primary 

definition for transmission cluster (5-year, county level) yielded k = 0.09 (CI = 0.08, 0.09). 

Inference of k remained robust throughout all four scenarios, ranging from 0.08 (3-year, 

county level) to 0.12 (5-year, state level; Table 3 and eFigure 8; http://links.lww.com/EDE/

B887).

DISCUSSION

Using both empirical and simulated data, we validated a method to quantify the parameters 

that govern TB transmission dynamics without the need for information on individual-

level transmission events. Using more easily obtainable transmission cluster size data, we 

found inference of individual heterogeneity remained robust despite potential real-world 

surveillance limitations. We applied this method to TB genotyping cluster data in the United 

States using multiple transmission cluster definitions and found values of k were consistent 

with a high propensity for extensive outbreaks.

To our knowledge, this study is the first to quantify individual heterogeneity in TB 

transmission in the United States, and these results are consistent with estimates of k in 

other low-incidence populations.13,14 Melsew et al14 used comprehensive follow-up data in 

Victoria, Australia, to estimate k directly from detailed individual-level data on secondary 

cases (k = 0.036). This study provides strong evidence of transmission heterogeneity, yet 

such detailed data are rarely available in a surveillance setting. Ypma et al13 estimated 

heterogeneity from cluster-level surveillance data in the Netherlands by relating individual 

variation specifically to the distribution of IS6110 restriction fragment length polymorphism 

(RFLP) genotypic cluster sizes (k = 0.10). RFLP is less discriminatory than MIRU-VNTR 

and WGS; as a consequence, the authors note their methods preclude accurate inference of 

R from the data. This complicates the interpretation of results, as both R and k are needed 

to accurately describe the propensity for large outbreaks in the population (eFigure 9; 

http://links.lww.com/EDE/B887). The methods proposed here build upon these foundational 

studies to more accurately characterize the propensity for a large outbreak.

Our results show that the accuracy of parameter estimation is more likely affected by 

potential limitations in surveillance than by biased inference, and accurate identification 

of transmission clusters and index cases is paramount to the utility of these methods. 

Notably, we show improved case detection through active case finding paradoxically makes 

transmission appear more homogeneous when using cluster-based inference (biases k
upward) due to small or isolated clusters being more likely to be wholly unobserved by 

passive surveillance and subsequently not eligible for active case finding measures. We 

also found the degree of uncertainty in parameter estimation is an increasing function of k 
itself; larger underlying k values show broader confidence intervals around k. This is likely 

because, as k increases, individual differences in transmission become more attributed to 

stochasticity rather than the underlying mechanisms of disease transmission.
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Our model was a simplified representation of recent TB transmission and assumed 

transmission is independent and identically distributed. We assumed mean susceptibility 

between individuals remained constant. In reality highly susceptible individuals generally 

acquire infection first, and thus average susceptibility reduces over generations of spread.43 

These results should be interpreted cautiously in smaller populations where the depletion 

of susceptible individuals may impact average susceptibility, which tends to decrease the 

effective reproduction number Rt.44,45 NTSS data are not real-time data, and the database is 

reliant upon state and local jurisdictions accurately diagnosing and reporting TB cases. We 

modeled molecular surveillance data with transmission clusters defined imprecisely using 

conventional genotyping. In particular, genotype clustering defined using MIRU-VNTR is 

less discriminatory for cases within the East Asian Mycobacterium tuberculosis lineage and 

certain other endemic genotypes that are prevalent in the United States, as evidenced by the 

increased molecular resolution of WGS and phylogenetic analysis results that can identify 

smaller clusters and isolated cases.46 Moreover, sources of heterogeneity were not explicitly 

considered, and imported incident cases with the same MIRU-VNTR may appear to cluster. 

Recent work has shown that alternative distributions, such as the Poisson-lognormal, may 

provide better statistical fits for genomic cluster data.47 In addition, WGS and epidemiologic 

link data were imperfectly matched to the NTSS and NTSG cluster distribution data and 

may overestimate the number of index cases in the original cluster. However, varying the 

number of index cases in large clusters from n = 1 to a maximum of n = y revealed that the 

estimates of k were largely insensitive to these assumptions.

This analysis provides a well-characterized model using simplified data to quantify 

individual differences in the number of secondary TB cases. This information has been 

notably absent from TB epidemiology yet is critical to surveillance systems seeking to better 

understand the underlying mechanisms of TB transmission. The application of this method 

also affords the opportunity to develop de novo epidemic models that better account for 

individual heterogeneity when evaluating prevention measures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Visualizing limitations arising in tuberculosis transmission surveillance. In the below 

transmission chains, black nodes represent observed cases of TB; gray represents 

unobserved. Arrows represent transmission events. A, Perfect surveillance when all cases 

originating from a single index case are observed without censoring. B, Incomplete 

ascertainment when i missing cases result in a cluster size of Y – i. C, Broken chains 

from incomplete ascertainment, such that the position of the missing case in the chain results 

in pseudo-clusters. D, Censored chains are ongoing chains at the time of data collection. E, 

Overlapping chains result when n chains are unable to be disentangled, as described in the 

methods, resulting in a single cluster of size y with n chains.
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FIGURE 2. 
Estimates of k by case ascertainment probabilities. Bias from missing TB cases through 

simulated passive and active surveillance modeled under the empirical estimates of R = 

0.50 and k = 0.15. Passive surveillance (p1) represents the proportion of TB cases that were 

properly ascertained (e.g., correctly diagnosed, cultured, and genotyped). Active surveillance 

(p2) represents the proportion of otherwise undiagnosed cases that were ascertained because 

of additional public health efforts (e.g., contact tracing) triggered after at least one other 

case in the chain was observed through passive surveillance (see methods). Numbers in the 

center of each combination of p1 and p2 represent the median value of k from 500 simulated 

surveillance systems for each combination of p1 and p2, as described in the methods. 

Additional R and k values shown in eFigure 2A, B (http://links.lww.com/EDE/B887).
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FIGURE 3. 
Impact of censoring on estimates of k. Results of simulated TB surveillance systems 

censored according to the methods, for each value of K between 0.1 and 1.1 in 0.01 

increments (R = 0.90). A, 5% of clusters are censored (pcens = 0.05). B, 20% censoring 

(pcens = 0.20). “Corrected” indicates estimates when accounting for censoring in the 

likelihood (i.e., P(Y ≥ y)). “Uncorrected” indicates censoring was not accounted for in the 

likelihood equation (all P(Y = y)). The dashed line represents perfect inference (e.g., k = k). 

Solid lines represent the median of 500 simulated surveillance systems for each K value; 

shading represents 95% confidence intervals. Additional censoring values shown in eFigure 

3 (http://links.lww.com/EDE/B887).
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FIGURE 4. 
Bias in k  arising due to overlapping clusters. Results of simulated TB surveillance systems 

with overlapping chains according to the methods, for each value of k between 0.1 and 1.1 

in 0.01 increments (R = 0.50). Simulations with (A) 5% and (B) 20% of TB transmission 

chains in the surveillance system overlap, per methods (pcens = 0.05 and 0.20, respectively). 

“Conditioned” likelihood shows results when the probability is conditioned on the number 

of overlapping chains in a given cluster (i.e., P(Y = y|n)); “Unconditioned” shows results 

when the number of overlapping chains is ignored (i.e., P(Y = y)). Shaded areas indicate 

95% confidence intervals; dashed line represents perfect inference k = k . Additional pcens 

values shown in eFigure 4 (http://links.lww.com/EDE/B887).
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FIGURE 5. 
Performance of inference procedure under imperfect surveillance. Results of 500 simulated 

TB surveillance systems under combined imperfect surveillance scenarios under moderate-

resource assumptions. Lines represent the interquartile range for each R and k combination; 

dots represent median values. Diamonds represent true values. R values were simulated at 

0.25, 0.50 (empirical), and 0.75. k values were simulated at 0.15 (empirical), 0.45, and 1.0. 

Analogous figures for high- and low-resource scenarios are available in eFigure 5 (http://

links.lww.com/EDE/B887).
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